1. Решение задач с помощью графа

    Теория графов применяется при решении задач из многих предметных областей: математика, биология, информатика

    Проект нравится 23 участникам
    Решение задач  с помощью графа

    1736 год, г.Кёнигсберг. Через город протекает река Прегеля. В городе - семь мостов, расположенных так, как показано на рисунке выше. С давних времен жители Кенигсберга бились над загадкой: можно ли пройти по всем мостам, пройдя по каждому только один раз? Эту задачу решали и теоретически, на бумаге, и на практике, на прогулках - проходя по этим самым мостам. Никому не удавалось доказать, что это неосуществимо, но и совершить такую «загадочную» прогулку по мостам никто не мог.

    Разрешить проблему удалось знаменитому математику Леонарду Эйлеру. Причем, он решил не только эту конкретную задачу, но придумал общий метод решения подобных задач. При решении задачи о Кенигсбергских мостах Эйлер поступил следующим образом: он "сжал" сушу в точки, а мосты "вытянул" в линии. Такую фигуру, состоящую из точек и линий, связывающих эти точки, называют ГРАФОМ.

    Граф – это совокупность непустого множества вершин и связей между вершинами. Кружки называются вершинами графа, линии со стрелками – дугами, без стрелок – ребрами.

    Виды графов:

    1. Ориентированный граф (кратко орграф) — рёбрам которого присвоено направление.

    2. Неориентированный граф - это граф, в котором нет направления линий.

    3. Взвешенный граф – дуги или ребра имеют вес (дополнительная информация).

    Решение задач с помощью графов:

    Задача 1.

    Решение: Обозначим ученых вершинами графа и проведем от каждой вершины линии к четырем другим вершинам. Получаем 10 линий, которые и будут считаться рукопожатиями.

    Задача 2.

    На пришкольном участке растут 8 деревьев: яблоня, тополь, береза, рябина, дуб, клен, лиственница и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. Расположите деревья от самого низкого к самому высокому.

    Решение:

    Вершины графа - это деревья, обозначенный первой буквой названия дерева. В данной задача два отношения: “быть ниже” и “быть выше”. Рассмотрим отношение “быть ниже” и проведем стрелки от более низкого дерева к более высокому. Если в задаче сказано, что рябина выше лиственницы, то стрелку ставим от лиственницы к рябине и т.д. Получаем граф, на котором видно, что самое низкое дерево – клен, затем идут яблоня, лиственница, рябина, сосна, дуб, береза и тополь.


    Задача 3.

    У Наташи есть 2 конверта: обычный и авиа, и 3 марки: прямоугольная, квадратная и треугольная. Сколькими способами Наташа может выбрать конверт и марку, чтобы отправить письмо?

    Решение:


    Ниже представлен разбор задач.

    Перейти к разделу Исследование